Polo-like kinase Plk2 is an epigenetic determinant of chemosensitivity and clinical outcomes in ovarian cancer.
نویسندگان
چکیده
Resistance to platinum- and taxane-based chemotherapy remains a major clinical impediment to effective management of epithelial ovarian cancer (EOC). To gain insights into resistance mechanisms, we compared gene and confirmed expression patterns of novel EOC cell lines selected for paclitaxel and carboplatin resistance. Here, we report that resistance can be conferred by downregulation of the Polo-like kinase Plk2. Mechanistic investigations revealed that downregulation occurred at the level of transcription via associated DNA methylation of the CpG island in the Plk2 gene promoter in cell lines, primary tumors, and patient sera. Inhibitory RNA (RNAi)-mediated knockdown and ectopic overexpression established a critical functional role for Plk2 in determining apoptotic sensitivity to paclitaxel and carboplatin. In drug-resistant human EOC cell lines, Plk2 promoter methylation varied with the degree of drug resistance and transcriptional silencing of the promoter. RNAi-dependent knockdown of Plk2 abrogated G(2)-M cell-cycle blockade by paclitaxel, conferring resistance to both paclitaxel and platinum. Conversely, ectopic expression of Plk2 restored sensitivity to G(2)-M cell-cycle blockade and cytotoxicity triggered by paclitaxel. In clinical cases, DNA methylation of the Plk2 CpG island in tumor tissue was associated with a higher risk of relapse in patients treated postoperatively with carboplatin and paclitaxel (P = 0.003). This trend was also reflected in the analysis of matched serum samples. Taken together, our results implicate Plk2 as a clinically important determinant of chemosensitivity, in support of the candidacy of Plk2 as a theranostic marker to inform EOC management.
منابع مشابه
Polo Like Kinase 2 Tumour Suppressor and cancer biomarker: new perspectives on drug sensitivity/resistance in cancer
The polo-like kinase PLK2 has recently been identified as a potential theranostic marker in the management of chemotherapy sensitive cancers. The methylation status of the PLK2 CpG island varies with sensitivity to paclitaxel and platinum in ovarian cancer cell lines. Importantly, extrapolation of these in vitro data to the clinical setting confirms that the methylation status of the PLK2 CpG i...
متن کاملPolo-like kinase 2 promotes chemoresistance and predicts limited survival benefit from adjuvant chemotherapy in colorectal cancer
Colorectal cancer (CRC) is one of the most common malignances worldwide. Chemoresistance remains a major issue in the field of CRC treatment. The present study aimed to investigate the potential role of polo-like kinase 2 (Plk2) in chemoresistance in CRC. The associations between Plk2 and clinicopathological factors, as well as chemotherapeutic benefit were analyzed with a publicly available CR...
متن کاملSilencing of polo-like kinase 2 increases cell proliferation and decreases apoptosis in SGC-7901 gastric cancer cells.
Polo‑like kinase 2 (PLK2) is a serine/threonine protein kinase, which has vital roles during mitosis and the centrosome cycle. In acute myeloblastic leukemia and hepatocarcinogenesis, PLK2 acts as a tumor suppressor; however, the function of PLK2 in gastric cancer remains to be elucidated. In the present study, PLK2 was overexpressed in gastric cancer tissues and three types of gastric cancer c...
متن کاملPolo-Like Kinase 2-Dependent Phosphorylation of NPM/B23 on Serine 4 Triggers Centriole Duplication
Duplication of the centrosome is well controlled during faithful cell division while deregulation of this process leads to supernumary centrosomes, chromosome missegregation and aneuploidy, a hallmark of many cancer cells. We previously reported that Polo-like kinase 2 (Plk2) is activated near the G1/S phase transition, and regulates the reproduction of centrosomes. In search for Plk2 interacti...
متن کاملPolo-like Kinase-2 Is Required for Centriole Duplication in Mammalian Cells
Centriole duplication initiates at the G1-to-S transition in mammalian cells and is completed during the S and G2 phases. The localization of a number of protein kinases to the centrosome has revealed the importance of protein phosphorylation in controlling the centriole duplication cycle. Here we show that the human Polo-like kinase 2 (Plk2) is activated near the G1-to-S transition of the cell...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cancer research
دوره 71 9 شماره
صفحات -
تاریخ انتشار 2011